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Parametric representations of the high-density nuclear equation of state are used in constructing models
for interpreting the astrophysical observations of neutron stars. This study explores how accurately
equations of state with strong first-order phase transitions can be represented using spectral or piecewise
analytic methods that assume no a priori knowledge of the location or the strength of the phase transition.
The model equations of state used in this study have phase transitions strong enough to induce a
gravitational instability that terminates the sequence of stable neutron stars. These equations of state also
admit a second sequence of stable stars with core matter that has undergone this strong first-order phase
transition (possibly driven by quark deconfinement). These results indicate that spectral representations
generally achieve somewhat higher accuracy than piecewise analytic representations having the same
number of parameters. Both types of representation show power-law convergence at approximately the
same rate.
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I. INTRODUCTION

Parametric representations of the nuclear equation of
state are used in the construction of models designed to
describe, and to understand at a deeper level, the astro-
physical observations of neutron stars. For example, these
representations can be used to solve the relativistic inverse
stellar structure problem in which the equation of state of
the stellar matter is determined from a knowledge of the
star’s macroscopic properties (e.g., their masses and
radii) [1–4]. This inverse structure problem can be solved
by adjusting the equation of state parameters to minimize
the differences between the neutron-star observations and
the models of those observed properties constructed from
the equation of state representation.
The quantity and quality of the astrophysical observa-

tions of neutron stars has improved significantly over the
past decade. The masses of neutron stars have now been
measured at the few percent level for dozens of neutron
stars from observations of binary systems. Both mass and
radius have been measured for a few individual neutron
stars at the 10%–20% level using x-ray observations [5–
13]. And both mass and tidal deformability have also been
measured using gravitational wave observations of binary
merger events [14–16], presently at somewhat lower
accuracy than that achieved by the best x-ray observations.
Reliable parametric representations of the high density

neutron-star equation of state are needed to construct useful
models of these observations. These representationsmust be
capable of representing the large class of possible neutron-
star equations of state at an accuracy level sufficient for the
current observations. And these representations should be

flexible enough to accommodate more accurate future
observations as they become available. A number of such
representations have been proposed, for example see
Refs. [17–22]. Some of these use spectral methods to
represent the equation of state over the full range of pressures
expected in neutron-star cores, while others use piecewise
analytic representations on a collection of shorter pressure
intervals that together span the range of core pressures. Both
types of representations have been shown to be convergent
(in the sense that their accuracies can be increased simply by
increasing the number of parameters) for a large collection
of nuclear-theory based equations of state [19], including
examples with a wide range of phase transitions [22,23].
These representations have also been shown to be accurate
enough to allow solutions of the relativistic inverse structure
problemwith accuracies commensuratewith the accuracy of
the available data from neutron-star observations [24].
Spectral methods provide the most efficient representa-

tions of smooth equations of state, converging exponen-
tially as the number N of spectral basis functions is
increased (i.e., with errors decreasing faster than any power
of 1=N). In comparison, piecewise analytic representations
typically have power-law convergence (i.e., with errors
decreasing as 1=Nk for some particular k). It is less widely
appreciated that spectral representations of nonsmooth
functions (e.g., equations of state with first- or second-
order phase transitions) are still convergent, but with
power-law rather than exponential convergence rates [25].
Tests of representations of neutron-star equations of state

with phase transitions of various sizes [22,23] showed that
even for these cases, the spectral representations were
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generally more accurate than the piecewise analytic rep-
resentations having the same number of adjustable param-
eters. The sizes of the first-order phase transitions included
in those studies were limited to discontinuities small
enough that they could occur within the contiguous family
of neutron stars. Sufficiently strong first-order phase
transitions trigger an instability that terminates the
sequence of stable neutron stars [26]. These instability
triggering first-order phase transitions were also studied in
Refs. [22,23], but representations of equations of state with
stronger first-order phase transitions have not yet been
studied.
There has been some interest recently in the possibility

that strong phase transitions could in some cases lead to a
disconnected sequence of stable higher density relativistic
stars [20,27,28]. The accuracy and convergence properties
of spectral representations of such equations of state have
not been determined at this time. While the efficacy of
using spectral representations of neutron-star equations of
state with phase transitions has been demonstrated in
Refs. [22,23], those studies have been strongly criticized
(by a subset of the relativistic astrophysics community)
because they did not include phase transitions strong
enough to trigger the gravitational instability while
allowing a disconnected sequence of stable higher density
stellar models. The primary motivation for the present
study is to determine whether that criticism is justified: Are
spectral methods useful for representing neutron star
equations of state with strong hadron-quark type phase
transitions?
The model equations of state used in this study include

phase transitions intended to describe the possible tran-
sition from hadron to quark matter [27]. These phase
transitions are strong enough to terminate the contiguous
sequence of neutron stars, and they allow a second
disconnected sequence of stable relativistic stars with quark
matter cores. Section II describes in detail the model
equations of state used in this study. These equations of
state are based on the ACB4 and ACB5 models of hadron-
quark phase transitions introduced in Ref. [27]. The
versions of these equations of state used in this study
are those adapted in Ref. [29] using a multipolytrope
representation with a Maxwell construction. This study
also considers the generalizations introduced in Ref. [29],
which incorporate a mixed-phase region at the hadron-
quark interface, mimicking finite-size effects associated
with a “pasta” phase [30,31].
The equation of state representations used in this study

are a causal Chebyshev polynomial based spectral
representation [22], and a causal piecewise analytic
representation [19]. These representations are described
in Secs. III A and III B respectively. They are used to
construct model equations of state that cover the full range
of pressures that exist in the cores of both neutron and
quark stars. Section III C introduces two-zone equation of

state representations. These composite representations split
the pressure range at the phase transition point with
separate spectral (or piecewise analytic) representations
below and above this point. These above and below
representations are then combined to form a composite
representation which includes three additional parameters
that determine the location and size of the phase transition
point. Two-zone representations of this type have not been
used previously in the context of neutron star equations of
state. Determining whether these two-zone representations
provide a more efficient way to represent equations of state
with strong first-order phase transitions is another primary
motivation for this study.
Section IV of this study describes how the optimal

representations of the hadron-quark equations of state
are constructed for this study. Section V describes the
numerical accuracy and convergence results obtained for
the model equations of state with hadron-quark phase
transitions described in Sec. II, using the various repre-
sentation methods described in Sec. III. These results are
discussed in Sec. VI. They show that the accuracy and
convergence rates of the spectral and the piecewise analytic
representations are comparable, with the spectral represen-
tations generally being somewhat more accurate than the
piecewise analytic representations having the same number
of adjustable parameters. The two zone representations are
expected to become more accurate than their one zone
counterparts in the limit of large parameter numbers.
However the tests performed in this study using eleven
or fewer parameters show that the one zone spectral and
piecewise analytic representations are more accurate than
their two zone counterparts with the same number of
parameters.

II. MODEL EQUATIONS OF STATE

The model equations of state used in this study describe
possible strong hadron-quark phase transitions in neutron-
star matter. This study uses the ACB4 and ACB5 equations
of state introduced in Ref. [27]. These equations of state
feature first-order phase transitions, which induce gravita-
tional instabilities leading to the termination of the stable
hadronic neutron star sequence at approximately 2.0M⊙ for
ACB4 and 1.4M⊙ for ACB5. These equations of state also
admit a disconnected branch of stable hybrid stars whose
cores consist of the higher density quark matter. The
ACB4ðΔPÞ and ACB5ðΔPÞ equations of state introduced
in Ref. [29] are generalizations of ACB4 and ACB5 that use
second-order phase transitions to model a mixed phase
region where the transition from hadron to quark matter
takes place over a range of pressures determined by the
parameter ΔP. These smoother transitions are designed to
mimic “pasta” structures in which hadron and quark matter
coexist at the same pressure, see Refs. [30–32]. The
parameter value ΔP ¼ 0 corresponds to the original
ACB4 and ACB5 equations of state with first-order phase
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transitions, while the larger ΔP values describe smoother
more gradual second-order transitions between the hadron
and quark phases.
Figures 1 and 2 illustrate the ACB4ðΔPÞ and ACB5ðΔPÞ

equations of state over the range of pressures used in this
study to evaluate the accuracy of spectral and piecewise
analytic representations. The lower end of this range,
pmin ¼ 1.23592430 × 1032 erg=cm3, was chosen to corre-
spond to the density, ϵmin ¼ 5.41165156 × 1013 g=cm3,
which is about one fifth normal nuclear density. The
upper end of the pressure range, pmax ¼ 1.13139676×
1036 erg=cm3, corresponds to the central pressures of the
maximummass quark stars that can be constructed from the

ACB4ðΔPÞ equations of state. Figures 3 and 4 illustrate in
more detail the regions of the ACB4ðΔPÞ and ACB5ðΔPÞ
equations of state where the phase transitions occur.
Figures 5 and 6 illustrate the mass-radius curves obtained

by solving the Oppenheimer-Volkoff relativistic stellar
structure equations [33] using the ACB4ðΔPÞ and
ACB5ðΔPÞ equations of state respectively. The stellar
models lying between the maxima and the subsequent
minima of some of these mass-radius curves are unstable to
a general relativistic gravitational instability that triggers
collapse to a black hole. The curves in Fig. 5 show that the
ACB4ðΔPÞ equations of state withΔP < 0.05 have maxima
that trigger this instability, while also admitting stable
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FIG. 1. This figure illustrates the ACB4ðΔPÞ equations of state
that have strong hadron-quark phase transitions at the central
pressure of a 2.0M⊙ neutron star model. The total energy density
ϵ and pressure p are expressed in cgs units: g=cm3 and erg=cm3

respectively. The parameter ΔP determines the width of the
pressure region over which the phase transitions occur.
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FIG. 2. This figure illustrates the ACB5ðΔPÞ equations of state
that have strong hadron-quark phase transitions at the central
pressure of a 1.4M⊙ neutron star model. The total energy density
ϵ and pressure p are expressed in cgs units: g=cm3 and erg=cm3

respectively. The parameter ΔP determines the width of the
pressure region over which the phase transitions occur.
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FIG. 3. This figure illustrates in more detail the regions of the
ACB4ðΔPÞ equations of state where the strong hadron-quark
phase transitions occur. The total energy density ϵ and pressure p
are expressed in cgs units: g=cm3 and erg=cm3 respectively. The
parameter ΔP determines the width of the pressure region over
which the phase transitions occur.
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FIG. 4. This figure illustrates in more detail the regions of the
ACB5ðΔPÞ equations of state where the strong hadron-quark
phase transitions occur. The total energy density ϵ and pressure p
are expressed in cgs units: g=cm3 and erg=cm3 respectively. The
parameter ΔP determines the width of the pressure region over
which the phase transitions occur.
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composite hadron-quark stars with larger central densities.
Similarly the curves in Fig. 6 show that the ACB5ðΔPÞ
equations of state with ΔP < 0.02 trigger this instability,
while also admitting stable composite hadron-quark stars
with larger central densities. The maximum masses and
central pressures of the stable composite hadron-quark stars
obtained using either the ACB4ðΔPÞ or the ACB5ðΔPÞ
equations of state are very insensitive to the width of the
phase transition region determined by the parameter ΔP.

III. CAUSAL PARAMETRIC EQUATION
OF STATE REPRESENTATIONS

This section describes the general methods used to
construct the causal parametric representations of the
high-density neutron-star equations of state used in this
study. These methods are applied in Secs. III A and III B to
construct the particular spectral and the piecewise analytic
representations used here. Section III C introduces two
zone equation of state representations that split the pressure
range at the phase transition point, with separate spectral

(or piecewise analytic) representations below and above
this point.
The speed of sound, v, in a relativistic barotropic fluid is

determined by the equation of state: v2 ¼ dp=dϵ [34]. These
sound speeds satisfy the thermodynamic stability condition,
v2 ≥ 0, and causality condition, v2 ≤ c2 (where c is the
speed of light), if and only if the velocity function ϒ,

ϒ ¼ c2 − v2

v2
; ð1Þ

is non-negative, ϒ ≥ 0.
The velocity functionϒ is determined by the equation of

state: ϒðpÞ ¼ c2dϵ=dp − 1. Conversely, ϒðpÞ can be used
as a generating function from which the standard equation
of state, ϵ ¼ ϵðpÞ, can be determined by quadrature. The
definition of the velocity function ϒðpÞ can be rewritten as
the ordinary differential equation,

dϵðpÞ
dp

¼ 1

c2
þϒðpÞ

c2
: ð2Þ

which can then be integrated to determine the equation of
state, ϵ ¼ ϵðpÞ

ϵðpÞ ¼ ϵmin þ
p − pmin

c2
þ 1

c2

Z
p

pmin

ϒðp0Þdp0: ð3Þ

The velocity functions ϒðp; υaÞ used in this study
depend on a series of parameters υa, for 1 ≤ a ≤ Nparms.
Equation (3) therefore determines a family of equations of
state, ϵ ¼ ϵðp; υaÞ, whose parameters can be adjusted to
model realistic physical equations of state.
The process of finding the optimal choice of parameters

needed to fit a particular equation of state generally requires
a knowledge of how the parametric equation of state,
ϵðp; υaÞ, changes as the parameters, υa, are varied. In some
cases the most efficient way to determine ∂ϵðp; υbÞ=∂υa is
to evaluate the integrals,

∂ϵðp; υbÞ
∂υa

¼ 1

c2

Z
p

pmin

∂ϒðp0; υbÞ
∂υa

dp0: ð4Þ

In more complicated cases it may be more efficient to
evaluate these derivatives numerically using finite differ-
ence expressions, e.g.,

∂ϵðp;υaÞ
∂υa

¼ ϵðp;υaþδυaÞ− ϵðp;υa−δυaÞ
2δυa

þOðδυ2aÞ: ð5Þ

A. Spectral representations

Causal parametric representations of the neutron-star
equation of state can be constructed by expressing the
velocity function, ϒðp; υaÞ, as a spectral expansion based
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FIG. 5. This figure illustrates the mass-radius curves obtained
by solving the Oppenheimer-Volkoff relativistic stellar structure
equations using the ACB4ðΔPÞ equations of state.
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FIG. 6. This figure illustrates the mass-radius curves obtained
by solving the Oppenheimer-Volkoff relativistic stellar structure
equations using the ACB5ðΔPÞ equations of state.
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on Chebyshev polynomials (see Ref. [22])

ϒðp; υaÞ ¼ ϒmin exp

� XNparms−1

a¼0

υað1þ yÞTaðyÞ
�
; ð6Þ

where the TaðyÞ are Chebyshev polynomials. The variable
y (defined below) is a function of the pressure having the
property that y ¼ −1 when p ¼ pmin. The constant ϒmin is
evaluated from the low-density equation of state at the point
p ¼ pmin where it matches onto the high density spectral
representation determined by Eq. (6). Choosingϒmin in this
way ensures that no artificial second-order phase-transition
discontinuity is introduced at the matching point. These
expansions guarantee that ϒðpÞ ≥ 0 for every choice of υa.
Therefore any equation of state determined from one of
these ϒðp; υaÞ automatically satisfies the causality and
thermodynamic stability conditions.
Chebyshev polynomials are defined by the recursion

relation Taþ1ðyÞ ¼ 2yTaðyÞ − Ta−1ðyÞ with T0ðyÞ ¼ 1
and T1ðyÞ ¼ y. Spectral expansions using Chebyshev basis
functions are well behaved on the domain −1 ≤ y ≤ 1 [25].
The variable y used here has been chosen to be the following
linear function of logp,

yðpÞ ¼ −1þ 2 log

�
p

pmin

��
log

�
pmax

pmin

��
−1
; ð7Þ

to ensure that −1 ≤ y ≤ 1 for pressures in the range
pmin ≤ p ≤ pmax. The factor 1þ y that appears in Eq. (6)
ensures that ϒðp; υaÞ has the limit, ϒðpmin; υaÞ ¼ ϒmin, for
every choice of spectral parameters υa. The partial derivatives
∂ϵðp; υbÞ=∂υa needed to evaluate the integrals in Eq. (4) for
this spectral representation are given by

∂ϒðp; υbÞ
∂υa

¼ ½1þ yðpÞ�Ta½yðpÞ�ϒðp; υbÞ: ð8Þ

B. Piecewise analytic representations

Causal piecewise-analytical representations are con-
structed by subdividing the pressure domain ½pmin; pmax�
into N subdomains with pmin ¼ p0 < p1 < … < pN−1 <
pN ¼ pmax (see Ref. [19]). In this study the pk are chosen
to be distributed logarithmically so that pk ¼
pk−1ðpmax=pminÞ1=N for each k ¼ 1; ...; N. In these repre-
sentations the velocity functionϒðpÞ is taken to be a simple
power law of the pressure

ϒðp; υkÞ ¼ ϒk

�
p
pk

�
υkþ1

; ð9Þ

in the subdomain pk ≤ p ≤ pkþ1. The adjustable param-
eters ϒk and υkþ1 determine its properties in each sub-
domain. The integral in Eq. (3) for this ϒðpÞ is easy to

perform, resulting in the following expression for ϵðp; υkÞ

ϵðp; υkÞ ¼ ϵk þ
p − pk

c2

þ pkϒk

ð1þ υkþ1Þc2
��

p
pk

�
1þυkþ1

− 1

�
ð10Þ

in the pressure subdomain pk ≤ p < pkþ1.
The constants ϒk and ϵk for the piecewise analytic

representations studied here are determined iteratively by
enforcing continuity of ϒðpÞ and ϵðpÞ at the pressure
subdomain boundaries

ϒk ¼ ϒk−1

�
pk

pk−1

�
υk
; ð11Þ

ϵk ¼ ϵk−1 þ
pk − pk−1

c2

þ pk−1ϒk−1

ð1þ υkÞc2
��

pk

pk−1

�
1þυk

− 1

�
; ð12Þ

with ϒ0 ¼ ϒmin. The remaining constants υk for 1 ≤ k ≤
N ¼ Nparms are the independent parameters that determine
the equation of state in each pressure subdomain. The
analytic expressions for the derivatives ∂ϵðp; υbÞ=∂υa are
quite complicated for these representations, so these
derivatives have been computed numerically for this study
using Eq. (5).

C. Two zone representations

The equation of state representations presented in
Secs. III A and III B provide unified descriptions of the
equation of state on the domain pmin ≤ p ≤ pmax. When
there is a large phase transition at a pressure ppt somewhere
in this domain, pmin ≤ ppt ≤ pmax, it may be possible to
construct more efficient representations by breaking the
original domain into two separate zones with pressures
below and above the phase transition point. This can be
done by constructing a representation in the first zone,
pmin ≤ p ≤ ppt, as described in Sec. III A or III B using the
additional parameter ppt that determines the location of the
phase transition. A separate representation can similarly be
constructed in the second zone, ppt ≤ p ≤ pmax, by intro-
ducing two additional parameters ϵpt and ϒpt that describe
the total energy density and the sound speed just above the
phase transition boundary. The resulting two zone repre-
sentation requires a total of Nparms ¼ 3þ N<

parms þ N>
parms

parameters, where N>
parms and N<

parms are the number of
parameters needed to specify the spectral or piecewise
representations in the zones above and below the phase
transition point.
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IV. CONSTRUCTING OPTIMAL PARAMETRIC
REPRESENTATIONS

Each of the model equations of state used in this study,
ACB4ðΔPÞ and ACB5ðΔPÞ, consists of a table of energy-
density pressure pairs: fϵi; pig for 1 ≤ i ≤ Neos. A para-
metric representation of one of these equations of state
consists of a function ϵðp; υaÞ and the values of the
parameters υa for 1 ≤ a ≤ Nparms that determine the energy
density as a function of the pressure. The accuracy of a
particular representation is determined by evaluating the
dimensionless error residual χðυaÞ, defined by

χ2ðυaÞ ¼
XNeos

i¼1

1

Neos

�
log

�
ϵðpi; υaÞ

ϵi

��
2

: ð13Þ

The optimal choice of the parameters υa to represent a
particular equation of state fϵi; pig is obtained by mini-
mizing χðυaÞ with respect to variations in each of the
parameters υa. This minimization is carried out numerically
in this study using the Levenberg-Marquardt method [35].
This minimization process requires a knowledge of the
derivatives of χ2ðυaÞ with respect to the parameters υa.
These derivatives are determined by the derivatives of
ϵðp; υaÞ,

∂χ2

∂υa
¼ 2

Neos

XNeos

i¼1

∂ log ϵðpi; υbÞ
∂υa

log

�
ϵðpi; υbÞ

ϵi

�
; ð14Þ

which in turn are determined for this study using Eqs. (4)
or (5).

V. NUMERICAL RESULTS

Causal spectral representations of the high-density por-
tions of the ACB4ðΔPÞ and ACB5ðΔPÞ equations of state
have been constructed numerically over a range of pressures,
pmin ≤ p ≤ pmax, using the methods described in Secs. III A
and IV. The lower end of the pressure range, pmin ¼
1.23592430 × 1032 erg=cm3, was chosen to be the point
in the exact equation of state tables corresponding to the
density, ϵmin ¼ 5.41165156 × 1013 g=cm3, which is about
one fifth normal nuclear density. The upper limit of this
pressure range, pmax ¼ 1.13139676 × 1036 erg=cm3, corre-
sponds to the central pressures of the maximum mass quark
stars that can be constructed from the ACB4ðΔPÞ equations
of state. The value of the velocity parameter ϒmin ¼
13.7751914 was chosen to ensure that the spectral repre-
sentations do not introduce a nonphysical second-order
phase transition at the p ¼ pmin point.
Figures 7 and 8 show the minimum values of the

equation of state error measures, χ defined in Eq. (14),
as functions of the number of spectral parameters, Nparms,
for the spectral representations of the ACB4ðΔPÞ and
ACB5ðΔPÞ equations of state. These results show that

the spectral representations of the equations of state with
second-order phase transitions, i.e., those with ΔP > 0,
converge more rapidly than the representation of the
discontinuous ΔP ¼ 0 equation of state. Nevertheless,
the spectral representations of the ΔP ¼ 0 equations of
state are convergent with χ decreasing monotonically from
χ ≈ 0.5 for Nparms ¼ 1 to χ ≈ 0.06 for Nparms ¼ 10.
Piecewise analytic representations of the high-density

portions of the ACB4ðΔPÞ and ACB5ðΔPÞ equations of
state have also been constructed numerically using the
methods described in Secs. III B and IV. The values of the
equation of state parameters used for these representations
cover the same pressure range as those used for the spectral
representations: p0 ¼ pmin ¼ 1.23592430× 1032 erg=cm3,
pNparms

¼ pmax ¼ 1.13139676× 1036 erg=cm3, ϵ0 ¼ ϵmin ¼
5.41165156 × 1013 g=cm3, andϒ0 ¼ ϒmin ¼ 13.7751914.
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FIG. 7. This figure illustrates the equation of state error
measures, χ, as functions of the number of spectral parameters
Nparms for the causal Chebyshev polynomial representations of
the ACB4ðΔPÞ equations of state.
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FIG. 8. This figure illustrates the equation of state error
measures, χ, as functions of the number of spectral parameters
Nparms for the causal Chebyshev polynomial representations of
the ACB5ðΔPÞ equations of state.
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Figures 9 and 10 show the minimum values of the
equation of state error measure, χ, defined in Eq. (14) as
functions of the number of parameters, Nparms, for the
piecewise analytic fits to the ACB4ðΔPÞ and ACB5ðΔPÞ
equations of state. Like the spectral representations, these
results show that the piecewise analytic representations of
the smoother equations of state with ΔP > 0 have smaller
errors than the representation of the discontinuous ΔP ¼ 0
equation of state, and that the values of χ generally get
smaller as Nparms increases. Unlike the results for the
spectral representations, however, the values of χ for these
piecewise analytic representations are not strictly decreas-
ing as Nparms increases. This nonmonotonic behavior
appears to be caused by the changes in the proximity of
the closest subdomain boundary to the phase transition
point as Nparms is increased.

Figure 11 presents a direct comparison between the
causal Chebyshev spectral representations of the discon-
tinuous ACB4 and ACB5 equations of state with ΔP ¼ 0,
and their causal piecewise analytic representations. These
results show that the spectral and the piecewise analytic
representations have comparable accuracies. The values of
χ for the spectral representations are generally somewhat
smaller than those for the piecewise analytic representa-
tions. Therefore the spectral representations are generally
somewhat more accurate than the piecewise analytic
representations with the same number of parameters.
Figures 12 and 13 illustrate the pointwise accuracies of

the causal Chebyshev spectral and the causal piecewise
analytic representations of the discontinuous ACB4 equa-
tion of state with ΔP ¼ 0. These figures show the pointwise
fractional errors, δðpÞ, defined by,
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FIG. 9. This figure illustrates the equation of state error
measures, χ, as functions of the number of spectral parameters
Nparms for the causal piecewise analytic representations of the
ACB4ðΔPÞ equations of state.
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FIG. 10. This figure illustrates the equation of state error
measures, χ, as functions of the number of spectral parameters
Nparms for the causal piecewise analytic representations of the
ACB5ðΔPÞ equations of state.
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FIG. 11. This figure illustrates the error measures χ for the
causal Chebyshev spectral and the causal piecewise analytic
representations of the ACB4 and ACB5 equations of state with
ΔP ¼ 0 as functions of the number of parameters Nparms.
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FIG. 12. This figure illustrates the fractional errors,
δðpÞ ¼ 1 − ϵðp; υaÞ=ϵexactðpÞ, for the causal Chebyshev spectral
representations of the ACB4ðΔP ¼ 0Þ equation of state with
Nparms ¼ 2, 6, or 10 spectral parameters.
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δðpÞ ¼ 1 −
ϵðp; υaÞ
ϵexactðpÞ

: ð15Þ

For clarity in these figures, only the errors for the
Nparms ¼ 2, 6, and 10 representations are shown. These
figures illustrate that both the spectral and piecewise
analytic representations make significant errors at and near
the phase transition points, but that both types of repre-
sentation become more accurate overall as the number of
parameters is increased. The nonsmooth features in these
figures near the lower end of the pressure range are caused
by the sparseness of the points in the exact ACB4 equation
of state tables fϵi; pig in that region.
The two zone spectral and piecewise analytic represen-

tations as described in Secs. III C and IV have also been
constructed in this study for the discontinuous ACB4
equation of state with ΔP ¼ 0. The number of parameters
in these two zone representations are the sum of the
parameters needed in the two independent zones plus three
additional parameters needed to describe the location and
size of the phase transition point. Thus the total number of
parameters is given by Nparms ¼ 3þ N<

parms þ N>
parms,

where N>
parms and N<

parms are the number of parameters
needed to specify the spectral or piecewise analytic
representations in the regions above and below the phase
transition point. The values of the three additional param-
eters needed to specify the phase transition properties in
this study have been set to the optimal values from the
exact ACB4 equation of state: ppt ¼ 1.01221731 × 1035,
ϵpt ¼ 1.01995577 × 1015, and ϒpt ¼ 0.586578885. Two
zone representations have been computed for this study
with N<

parms ¼ N>
parms ¼ 1, 2, 3, and 4, thus resulting in

representations with Nparms ¼ 5, 7, 9, and 11. Figure 14
illustrates the relationships between the accuracies of the
one and two zone spectral and piecewise analytic

representations. This figure shows that the one zone
representations are more accurate than the two zone
representations for the range of models studied here:
Nparms ≤ 11. This figure also shows that the spectral
representations are generally more accurate than the piece-
wise analytic representations having the same number of
parameters.

VI. DISCUSSION

In summary, tests have been performed in this study to
determine the accuracy and convergence rates of the
spectral and the piecewise analytic representations of
neutron-star equations of state with strong hadron-quark
phase transitions. These results show that both types of
representation are generally convergent as the number of
parameters is increased. These representations have com-
parable accuracies, with the spectral representations gen-
erally being slightly more accurate than the piecewise
analytic representations having the same number of adjust-
able parameters. The two zone spectral representations
should converge exponentially, and should therefore
become more accurate than their one zone counterparts
in the limit of large parameter numbers. However the tests
performed in this study using eleven or fewer parameters
show that the one zone spectral and piecewise analytic
representations are more accurate than their two zone
counterparts with the same number of parameters. The
analysis in Ref. [24] shows that very high accuracy
observations of neutron-star masses and radii are needed
before equation of state representations with large numbers
of parameters will be useful in determining the equation of
state more accurately. Therefore it is not likely that two
zone neutron-star representations will be useful for obser-
vational data analysis in the near future.
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FIG. 13. This figure illustrates the fractional errors,
δðpÞ ¼ 1 − ϵðp; υaÞ=ϵexactðpÞ, for the causal piecewise analytic
representations of the ACB4ðΔP ¼ 0Þ equation of state with
Nparms ¼ 2, 6, or 10 parameters.
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FIG. 14. This figure illustrates the equation of state accuracy
measure χ as a function of Nparms for one and two zone
representations of the ACB4ðΔP ¼ 0Þ equation of state based
on Chebyshev spectral or piecewise analytic methods. These
results show that the one zone representations are more efficient
than the two zone representations for Nparms ≤ 11.
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Figure 11 shows that the causal Chebyshev spectral
and the causal piecewise analytic representations of the
discontinuous ACB4 and ACB5 equations of state with
ΔP¼0 have comparable accuracies. It is possible that
other more accurate piecewise analytic representations
could be found. However, it is unlikely that such repre-
sentations will be significantly more accurate than the
representations studied here. Figure 15 shows that both the
spectral and the piecewise analytic representations used
here converge roughly as 1=Nparms. This 1=Nparms con-
vergence rate is the best that can be expected for piece-
wise analytic representations of discontinuous equations of
state without any a prior knowledge of the locations or the
sizes of the discontinuities. Given that the representations
studied here already converge roughly at this rate, it is very
unlikely that significantly better representations could
be found.
The efficacy of using spectral representations of the

neutron-star equation of state to solve the relativistic
inverse stellar structure problem has been demonstrated
in Refs. [1,2,4,24]. Those studies, however, could be
extended and improved in a number of ways. The mock
mass-radius data used in those studies were based on
equations of state without the very large hadron-quark
type phase transitions included in this study. Future
studies could explore such cases. The study in
Ref. [24] used mock noisy mass-radius data having
uniformly distributed observational errors. Future stud-
ies could improve this by using more realistic observa-
tional errors.
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